sdAb anti-ALFA

Cat No: N1505 Category:

275,00 625,00 

Read more

The ALFA tag is a novel, rationally designed epitope tag (SRLEEELRRRLTE) and is part of the proprietary technology of NanoTag. In contrast to most conventional epitope tags, the ALFA tag was developed based on rational considerations, which enabled us to equip it with desired features (learn more about the ALFA system here). The ALFA tag, in combination with three sdAbs, offers a unique platform to employ a single epitope tag in virtually all biochemical and biomedical applications. A full characterization of the system can be found in an open source article published in Nat. Commun. in 2019.

Variations:
Conjugation Amount Cat No. RRID
unconjugated C-terminal Cys 250 μg N1505-250ug AB_3075986
Biotin 250 μg N1505-Biotin AB_3075987
DBCO 250 μg N1505-DBCO AB_3075988
HRP 200 μl N1505-HRP AB_3075989
Related Products:

MSDS datasheets for HRP conjugated sdAbs can be found here

Clone: 1G5
Host: Alpaca
Produced in: E.coli
Application: IF, WB
Dilution: ELISA with sdAb anti-ALFA HRP 1:5000
Capacity: N/A
Antigen: -
Targets: ALFA-tag
Specificity: Recognizes the ALFA tag (SRLEEELRRRLTE).
Formulation:

DBCO and biotin-conjugated sdAbs (1:1 labeling on the c-term.) are lyophilized from PBS pH 7.4. Unconjugated sdAbs are lyophilized from 10 mM KPi,150 mM NaCl, and 1 mM EDTA pH 6.0. Reconstitute with 250 µL pure deionized water for immediate use or with 250 µL 50% glycerol for storage at -80 °C. The N1505-HRP is lyophilized from 200 µL HRP protector buffer and should be reconstituted with 200 µL pure deionized water. and Store at 4°C.

kDa: 16.0
Ext Coef: 18638
Shipping: Ambient temperature
Storing:

Vials containing lyophilized protein can be stored at 4°C for up to 6 months. Vials containing reconstituted protein should be stored at -20°C or below.

Protocols: -
References:
  1. Götzke H, Kilisch M, Martínez-Carranza M, Sograte-Idrissi S, Rajavel A, Schlichthaerle T, Engels N, Jungmann R, Stenmark P, Opazo F, Frey S. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun. 2019 Sep 27;10(1):4403. doi: 10.1038/s41467-019-12301-7. PMID: 31562305; PMCID: PMC6764986.
  2. Mougios N, Cotroneo ER, Imse N, et al. NanoPlex: a universal strategy for fluorescence microscopy multiplexing using nanobodies with erasable signals. Nat Commun. 2024;15(1):8771. Published 2024 Oct 10. doi:10.1038/s41467-024-53030-w
  3. Shaib AH, Chouaib AA, Chowdhury R, et al. One-step nanoscale expansion microscopy reveals individual protein shapes. Nat Biotechnol. Published online October 9, 2024. doi:10.1038/s41587-024-02431-9
  4. Hellmeier J, Strauss S, Xu S, et al. Quantification of absolute labeling efficiency at the single-protein level. Nat Methods. Published online April 24, 2024. doi:10.1038/s41592-024-02242-5 (ICC/IF; DNA-PAINT)
  5. van Zwam MC, Dhar A, Bosman W, et al. IntAct: A nondisruptive internal tagging strategy to study the organization and function of actin isoforms. PLoS Biol. 2024;22(3):e3002551. Published 2024 Mar 11. doi:10.1371/journal.pbio.3002551 (N1505-HRP; WB; HT1080 cells)
  6. Zhang L, Stauffer WT, Wang JS, et al. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. Elife. 2023;12:e84492. Published 2023 Jan 26. doi:10.7554/eLife.84492 (WB; C. elegans)
  7. Igreja C, Loschko T, Schäfer A, et al. Application of ALFA-Tagging in the Nematode Model Organisms Caenorhabditis elegans and Pristionchus pacificus. Cells. 2022;11(23):3875. Published 2022 Dec 1. doi:10.3390/cells11233875 (WB; C. elegans, P. pacificus)
  8. Akhuli D, Dhar A, Viji AS, Bhojappa B, Palani S. ALIBY: ALFA Nanobody-Based Toolkit for Imaging and Biochemistry in Yeast. mSphere. 2022;7(5):e0033322. doi:10.1128/msphere.00333-22 (WB; yeast)
  9. Buglino JA, Ozakman Y, Xu Y, Chowdhury F, Tan DS, Glickman MS. Diisonitrile Lipopeptides Mediate Resistance to Copper Starvation in Pathogenic Mycobacteria. mBio. 2022;13(5):e0251322. doi:10.1128/mbio.02513-22 (WB; M. tuberculosis)
  10. Carsten A, Rudolph M, Weihs T, et al. MINFLUX imaging of a bacterial molecular machine at nanometer resolution. Methods Appl Fluoresc. 2022;11(1):10.1088/2050-6120/aca880. Published 2022 Dec 13. doi:10.1088/2050-6120/aca880 (WB; HeLa infected with Y. enterocolitica)
  11. Kusakari K, Machida T, Ishida Y, et al. The complex formation of MASP-3 with pattern recognition molecules of the lectin complement pathway retains MASP-3 in the circulation. Front Immunol. 2022;13:907023. Published 2022 Aug 16. doi:10.3389/fimmu.2022.907023 (Homodimer formation)
  12. Xu J, Kim AR, Cheloha RW, et al. Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies. Elife. 2022;11:e74326. Published 2022 Jan 25. doi:10.7554/eLife.74326 (WB; fruit fly)
  13. Zhang Q, Miyamoto A, Watanabe S, et al. Engineered fast-dissociating antibody fragments for multiplexed super-resolution microscopy. Cell Rep Methods. 2022;2(10):100301. Published 2022 Sep 20. doi:10.1016/j.crmeth.2022.100301 (IF, multiplexed super-resolution microscopy; Xenopus laevis XTC cells)
  14. Gomkale R, Linden A, Neumann P, et al. Mapping protein interactions in the active TOM-TIM23 supercomplex. Nat Commun. 2021;12(1):5715. Published 2021 Sep 29. doi:10.1038/s41467-021-26016-1 (WB; yeast)
Notice: To be used in vitro/ for research only. Non-toxic, non-hazardous, non-infectious.
Legal terms: By purchasing this product you agree to our general terms and conditions.