FluoTag®-X2 anti-ALFA

Cat No: N1502 Category:

400,00 

FluoTag®-X2 anti-ALFA is derived from an in-house developed single-domain antibody (sdAb) that recognizes a small rationally-designed epitope tag: the ALFA tag.

Read more

FluoTag®-X2 anti-ALFA is derived from an in-house developed single-domain antibody (sdAb) that recognizes a small rationally-designed epitope tag: the ALFA tag. A full characterization of the system can be found in an open source article published in Nat. Commun. in 2019.

Our FluoTag-X2 series binds in a monovalent fashion with high affinity and specificity irrespective of whether the sample is alive or fixed with 4% paraformaldehyde, 2% glutaraldehyde, or methanol. Additionally, like all X2 FluoTags, it features two site-specifically coupled fluorophores per sdAb.

Owing to the small size of our FluoTags and the short ALFA-tag (15 amino acids; PSRLEEELRRRLTEP), the distance between the target epitope and each fluorophore is below 3 nm. Proteins of interest can be tagged with our ALFA-tag at the N-termini, C-termini, or in-between domains and they can also be immunoprecipitated or natively purified with complexes or partner binders using our series of ALFA-Selector resins with physiological elution capability.

Therefore, this ALFA tag and the companion FluoTags®-X2 anti-ALFA and ALFA-Selectors are the perfect choices for fluorescent-based experiments that want to be combined with biochemical purifications, mass-spectrometry, or any other high-end application.

FluoTags® can be equipped with a single fluorophore for more quantitative readouts (FluoTag®-Q), with two fluorophores per single-domain antibody (FluoTag®-X2), and we also developed a blend of two sdAbs bindings simultaneously the target proteins and each bearing two fluorophores (FluoTag®-X4). For more detailed information on the FluoTags, please check our Technology Section.

Variations:
Conjugation Amount Cat No. RRID
Atto488 200 μl N1502-At488-L AB_3075982
AZDye568 200 μl N1502-AF568-L AB_3075980
Atto643 200 μl N1502-At643-L AB_3075983
Alexa647 200 μl N1502-AF647-L AB_3075981
LI-COR IRDye 680RD 200 μl N1502-Li680-L AB_3075984
LI-COR IRDye 800CW 200 μl N1502-Li800-L AB_3075985
AbberiorStar635P 200 μl N1502-Ab635P-L AB_3075979
Related Products: -
Clone: 1G5
Host: Alpaca
Produced in: E. coli
Application: IF, IHC, WB
Dilution: 1:500 (corresponding to 5 nM final concentration)
Capacity: N/A
Antigen: -
Targets: ALFA-tag
Specificity: It recognizes the ALFA tag (SRLEEELRRRLTE).
Formulation: The single sdAb clone was lyophilized from PBS pH 7.4 containing 2% BSA (US-Origin). For more details, click the "Protocols" button above and check "Reconstitution and Storage".
kDa: -
Ext Coef: -
Shipping: Ambient temperature
Storing: Vials containing lyophilized reagent can be stored at 2-8°C for up to 12 months. After reconstitution, store at -80°C for up to 6 months. Working aliquots can be stored at -20°C for up to 4 weeks. For more details, click the "Protocols" button above and check "Reconstitution and Storage".
Protocols:

Relevant protocols can be found under the “Protocols” button above. For additional information, visit our Resources page.

 

References:
  1. Götzke H, Kilisch M, Martínez-Carranza M, Sograte-Idrissi S, Rajavel A, Schlichthaerle T, Engels N, Jungmann R, Stenmark P, Opazo F, Frey S. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun. 2019 Sep 27;10(1):4403. doi: 10.1038/s41467-019-12301-7. PMID: 31562305; PMCID: PMC6764986.
  2. Potlapalli BP, Fuchs J, Rutten T, Meister A, Houben A. The potential of ALFA-tag and tyramide-based fluorescence signal amplification to expand the CRISPR-based DNA imaging toolkit. J Exp Bot. Published online August 6, 2024. doi:10.1093/jxb/erae341 (CRISPR-FISH; DNA repeats/centromere labeling; A. thaliana , Z. mays, V. faba, mouse)
  3. Vicidomini R, Choudhury SD, Han TH, et al. Versatile nanobody-based approach to image, track and reconstitute functional Neurexin-1 in vivo. Nat Commun. 2024;15(1):6068. Published 2024 Jul 18. doi:10.1038/s41467-024-50462-2 (IHC; STED, fruit fly)
  4. van Zwam MC, Dhar A, Bosman W, et al. IntAct: A nondisruptive internal tagging strategy to study the organization and function of actin isoforms. PLoS Biol. 2024;22(3):e3002551. Published 2024 Mar 11. doi:10.1371/journal.pbio.3002551 (ICC/IF; HT1080 cells and yeast)
  5. Beckers CJ, Mrestani A, Komma F, Dannhäuser S. Versatile Endogenous Editing of GluRIIA in Drosophila melanogaster. Cells. 2024;13(4):323. Published 2024 Feb 10. doi:10.3390/cells13040323 (IF, SIM, dSTORM; fruit fly)
  6. Sanfilippo P, Kim AJ, Bhukel A, et al. Mapping of multiple neurotransmitter receptor subtypes and distinct protein complexes to the connectome. Neuron. Published online January 13, 2024. doi:10.1016/j.neuron.2023.12.014 (IF; fruit fly)
  7. Neitthoffer B, Alvarez F, Larrous F, Caillet-Saguy C, Etienne-Manneville S, Boëda B. A short sequence in the tail of SARS-CoV-2 envelope protein controls accessibility of its PDZ-binding motif to the cytoplasm. J Biol Chem. 2024;300(1):105575. doi:10.1016/j.jbc.2023.105575 (IF; human HeLa)
  8. Westlund E, Bergenstråle A, Pokhrel A, et al. Application of nanotags and nanobodies for live cell single-molecule imaging of the Z-ring in Escherichia coli. Curr Genet. 2023;69(2-3):153-163. doi:10.1007/s00294-023-01266-2 (STED, PALM; E.coli)
  9. Zhang L, Stauffer WT, Wang JS, et al. Recruitment of Polo-like kinase couples synapsis to meiotic progression via inactivation of CHK-2. Elife. 2023;12:e84492. Published 2023 Jan 26. doi:10.7554/eLife.84492 (IF; C. elegans)
  10. Saal KA, Shaib AH, Mougios N, Crzan D, Opazo F, Rizzoli SO. Heat denaturation enables multicolor X10-STED microscopy. Sci Rep. 2023;13(1):5366. Published 2023 Apr 1. doi:10.1038/s41598-023-32524-5 (ICC/IF; primary neurons and synaptic vesicles from rat)
  11. Tsutsumi N, Masoumi Z, James SC, et al. Structure of the thrombopoietin-MPL receptor complex is a blueprint for biasing hematopoiesis. Cell. 2023;186(19):4189-4203.e22. doi:10.1016/j.cell.2023.07.037 (IF, smFRET; HeLa)
  12. Carsten A, Rudolph M, Weihs T, et al. MINFLUX imaging of a bacterial molecular machine at nanometer resolution. Methods Appl Fluoresc. 2022;11(1):10.1088/2050-6120/aca880. Published 2022 Dec 13. doi:10.1088/2050-6120/aca880 (MINFLUX, STED, STORM; HeLa infected with Y. enterocolitica)
  13. Rudd-Schmidt JA, Laine RF, Noori T, Brennan AJ, Voskoboinik I. ALFA-PRF: a novel approach to detect murine perforin release from CTLs into the immune synapse. Front Immunol. 2022;13:931820. Published 2022 Dec 22. doi:10.3389/fimmu.2022.931820 (Live cell TIRF & Live cell spinning disk confocal imaging; mouse primary T cells)
  14. Igreja C, Loschko T, Schäfer A, et al. Application of ALFA-Tagging in the Nematode Model Organisms Caenorhabditis elegans and Pristionchus pacificus. Cells. 2022;11(23):3875. Published 2022 Dec 1. doi:10.3390/cells11233875 (IF; C. elegans, P. pacificus)
  15. Fessler E, Krumwiede L, Jae LT. DELE1 tracks perturbed protein import and processing in human mitochondria. Nat Commun. 2022;13(1):1853. Published 2022 Apr 6. doi:10.1038/s41467-022-29479-y (Flow Cytometry, WB; human HAP1)
  16. Akhuli D, Dhar A, Viji AS, Bhojappa B, Palani S. ALIBY: ALFA Nanobody-Based Toolkit for Imaging and Biochemistry in Yeast. mSphere. 2022;7(5):e0033322. doi:10.1128/msphere.00333-22 (IF; yeast)
  17. Rudolph M, Carsten A, Kulnik S, Aepfelbacher M, Wolters M. Live imaging of Yersinia translocon formation and immune recognition in host cells. PLoS Pathog. 2022;18(5):e1010251. Published 2022 May 23. doi:10.1371/journal.ppat.1010251  (IF, STED, life cell imaging; human HeLa infected with Y. enterocolitica)
  18. Frodyma DE, Troia TC, Rao C, et al. PGC-1β and ERRα Promote Glutamine Metabolism and Colorectal Cancer Survival via Transcriptional Upregulation of PCK2. Cancers (Basel). 2022;14(19):4879. Published 2022 Oct 5. doi:10.3390/cancers14194879 (IF, confocal microscopy; human colorectal cancer cell lines)
  19. Bloemeke N, Meighen-Berger K, Hitzenberger M, et al. Intramembrane client recognition potentiates the chaperone functions of calnexin. EMBO J. 2022;41(24):e110959. doi:10.15252/embj.2022110959 (IF; monkey COS-7 )
  20. Xu J, Kim AR, Cheloha RW, et al. Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies. Elife. 2022;11:e74326. Published 2022 Jan 25. doi:10.7554/eLife.74326 (IF; fruit fly)
  21. Wiktor J, Gynnå AH, Leroy P, et al. RecA finds homologous DNA by reduced dimensionality search [published correction appears in Nature. 2021 Dec;600(7887):E11]. Nature. 2021;597(7876):426-429. doi:10.1038/s41586-021-03877-6 (STED)
  22. Zimmer MM, Kibe A, Rand U, et al. The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting. Nat Commun. 2021;12(1):7193. Published 2021 Dec 10. doi:10.1038/s41467-021-27431-0 (WB; human Huh7)
  23. Silbern I, Pan KT, Fiosins M, et al. Protein Phosphorylation in Depolarized Synaptosomes: Dissecting Primary Effects of Calcium from Synaptic Vesicle Cycling. Mol Cell Proteomics. 2021;20:100061. doi:10.1016/j.mcpro.2021.100061 (IF; rat)
  24. Bekere I, Huang J, Schnapp M, et al. Yersinia remodels epigenetic histone modifications in human macrophages. PLoS Pathog. 2021;17(11):e1010074. Published 2021 Nov 18. doi:10.1371/journal.ppat.1010074 (IF, primary human macrophages infected with Y. enterocolitica)
Notice: To be used in vitro/ for research only. Non-toxic, non-hazardous, non-infectious.
Legal terms: By purchasing this product you agree to our general terms and conditions.